Towards modelling X-ray reverberation in AGN: Piecing together the extended corona

D.R. Wilkins, E.M. Cackett, A.C. Fabian and C.S. Reynolds, 2016, MNRAS 458, 200

Models of X-ray reverberation from extended coronae are developed from general relativistic ray tracing simulations. Reverberation lags between correlated variability in the directly observed continuum emission and that reflected from the accretion disc arise due to the additional light travel time between the corona and reflecting disc. X-ray reverberation is detected from an increasing sample of Seyfert galaxies and a number of common properties are observed, including a transition from the characteristic reverberation signature at high frequencies to a hard lag within the continuum component at low frequencies, as well a pronounced dip in the reverberation lag at 3keV. These features are not trivially explained by the reverberation of X-rays originating from simple point sources. We therefore model reverberation from coronae extended both over the surface of the disc and vertically. Causal propagation through its extent for both the simple case of constant velocity propagation and propagation linked to the viscous timescale in the underlying accretion disc is included as well as stochastic variability arising due to turbulence locally on the disc. We find that the observed features of X-ray reverberation in Seyfert galaxies can be explained if the long timescale variability is dominated by the viscous propagation of fluctuations through the corona. The corona extends radially at low height over the surface of the disc but with a bright central region in which fluctuations propagate up the black hole rotation axis driven by more rapid variability arising from the innermost regions of the accretion flow.

Previous
Previous

The high-Eddington NLS1 Ark 564 has the coolest corona

Next
Next

Flaring from the supermassive black hole in Mrk 335 studied with Swift and NuSTAR