Geodesic Equations in Kerr Spacetime

D.R. Wilkins

Easter Term 2010

In Boyer-Lindquist co-ordinates, the Kerr metric is written

$$ds^{2} = c^{2} \left(1 - \frac{2\mu r}{\rho^{2}} \right) dt^{2} + \frac{4\mu a c r \sin^{2} \theta}{\rho^{2}} dt d\varphi - \frac{\rho^{2}}{\Delta} dr^{2} - \rho^{2} d\theta^{2}$$
$$- \left(r^{2} + a^{2} + \frac{2\mu a^{2} r \sin^{2} \theta}{\rho^{2}} \right) \sin^{2} \theta d\varphi^{2}$$

where,

$$\mu \equiv \frac{GM}{c^2}$$

$$\rho^2 \equiv r^2 + a^2 \cos^2 \theta$$

$$\Delta \equiv r^2 - 2\mu r + a^2$$

The Lagrangian is given by

$$\mathcal{L} = g_{\mu\nu}\dot{x}^{\mu}\dot{x}^{\nu}$$

which for the Kerr metric gives:

$$\mathcal{L} = c^2 \left(1 - \frac{2\mu r}{\rho^2} \right) \dot{t}^2 + \frac{4\mu a c r \sin^2 \theta}{\rho^2} \dot{t} \dot{\varphi} - \frac{\rho^2}{\Delta} \dot{r}^2 - \rho^2 \dot{\theta}^2$$
$$- \left(r^2 + a^2 + \frac{2\mu a^2 r \sin^2 \theta}{\rho^2} \right) \sin^2 \theta \dot{\varphi}^2$$

The geodesic equations are then given by the Euler-Lagrange equation:

$$\frac{d}{d\sigma} \left(\frac{\partial \mathcal{L}}{\partial \dot{x}^{\mu}} \right) - \frac{\partial \mathcal{L}}{\partial x^{\mu}} = 0$$

For the t co-ordinate, this gives

$$\frac{d}{d\sigma} \left[c^2 \left(1 - \frac{2\mu r}{\rho^2} \right) \dot{t} + \frac{2\mu a c r \sin^2 \theta}{\rho^2} \dot{\varphi} \right] = 0$$

Thus, this is a constant of the motion.

$$c^{2}\left(1 - \frac{2\mu r}{\rho^{2}}\right)\dot{t} + \frac{2\mu a c r \sin^{2}\theta}{\rho^{2}}\dot{\varphi} \equiv kc^{2}$$
(1)

Likewise, the Euler-Lagrange equation gives for φ ,

$$\frac{d}{d\sigma} \left[\frac{2\mu a c r \sin^2 \theta}{\rho^2} \dot{t} - \left(r^2 + a^2 + \frac{2\mu a^2 r \sin^2 \theta}{\rho^2} \right) \sin^2 \theta \dot{\varphi} \right] = 0$$

Which is also a constant

$$\frac{2\mu a c r \sin^2 \theta}{\rho^2} \dot{t} - \left(r^2 + a^2 + \frac{2\mu a^2 r \sin^2 \theta}{\rho^2}\right) \sin^2 \theta \dot{\varphi} \equiv -h \tag{2}$$

Eliminating between Equations 1 and 2 yields the geodesic equation for $\dot{\varphi}$.

$$\dot{\varphi} = \frac{\frac{2\mu a c r}{\rho^2} k + \left(1 - \frac{2\mu r}{\rho^2}\right) \frac{h}{\sin^2 \theta}}{r^2 + a^2 - \frac{2\mu r^3}{\rho^2} - \frac{2\mu a^2 r \cos^2 \theta}{\rho^2}}$$
(3)

Which, after multiplying the fraction through by $\rho^2 \sin^2 \theta$ and some further manipulation, can be re-written

$$\dot{\varphi} = \frac{2\mu a c r k \sin^2 \theta + (r^2 + a^2 \cos^2 \theta - 2\mu r) h}{(r^2 + a^2)(r^2 + a^2 \cos^2 \theta - 2\mu r) \sin^2 \theta + 2\mu a^2 r \sin^4 \theta}$$
(4)

The geodesic equation for \dot{t} is given by substituting (3) back into Equation 2:

$$\dot{t} = \frac{\left(r^2 + a^2 + \frac{2\mu a^2 r \sin^2 \theta}{\rho^2}\right) k - \frac{2\mu a r}{c\rho^2} h}{r^2 + a^2 - \frac{2\mu r^3}{\rho^2} - \frac{2\mu a^2 r \cos^2 \theta}{\rho^2}}$$
(5)

After multiplying the fraction through by ρ^2 , some further manipulation gives

$$\dot{t} = \frac{\left[(r^2 + a^2 \cos^2 \theta)(r^2 + a^2) + 2\mu a^2 r \sin^2 \theta \right] k - \frac{2\mu a r}{c} h}{r^2 \left(1 + \frac{a^2 \cos^2 \theta}{r^2} - \frac{2\mu}{r} \right) (r^2 + a^2) + 2\mu a^2 r \sin^2 \theta}$$
(6)

It is possible to obtain equivalent second order expressions for \ddot{r} and $\ddot{\theta}$, however it is often more convenient to obtain first order expressions using first integrals.

A first integral of the geodesic equations is available from the constant length of the 4-velocity

$$a_{\mu\nu}\dot{x}^{\mu}\dot{x}^{\nu}=\epsilon^2$$

Where $\epsilon^2 = c^2$ for massive particles and $\epsilon^2 = 0$ for photons (null geodesics).

Furthermore, for the Kerr metric it can be shown that (see, e.g. 'The Mathematical Theory of Black Holes', S. Chandrasekhar, 1983)

$$\left[a\sin\theta c\dot{t} - (r^2 + a^2)\sin\theta\dot{\varphi}\right]^2 + \rho^4\dot{\theta}^2 + \epsilon a^2\cos^2\theta \equiv K$$

is conserved along an affinely-parameterised geodesic.

Using (1) and (2),

$$a\sin\theta\dot{t} - (r^2 + a^2)\sin\theta\dot{\varphi} = kca\sin\theta - h\csc\theta$$

Thus,

$$\rho^4 \dot{\theta}^2 = K - \epsilon a^2 \cos^2 \theta - (kca \sin \theta - h \csc \theta)^2$$

This can be rewritten

$$\rho^{4}\dot{\theta}^{2} = K - (h - kca)^{2} - (\epsilon - k^{2}c^{2})a^{2}\cos^{2}\theta - h^{2}\cot^{2}\theta$$

For null geodesics (i.e. photons), $\epsilon = 0$.

$$\rho^4 \dot{\theta}^2 = K - (h - kca)^2 + k^2 c^2 a^2 \cos^2 \theta - h^2 \cot^2 \theta$$

And redefining the constant, $Q = K - (h - kca)^2$,

$$\dot{\theta}^2 = \frac{Q + (kca\cos\theta - h\cot\theta)(kca\cos\theta + h\cot\theta)}{\rho^4} \tag{7}$$

Finally, the geodesic equation in \dot{r} is readily obtained from the length of the 4-velocity.

$$g_{\mu\nu}\dot{x}^{\mu}\dot{x}^{\nu} = \epsilon^2$$

Putting in the components of the metric,

$$\begin{split} c^2 \left(1 - \frac{2\mu r}{\rho^2}\right) \dot{t}^2 &+ \frac{4\mu a c r \sin^2 \theta}{\rho^2} \dot{t} \dot{\varphi} - \frac{\rho^2}{\Delta} \dot{r}^2 - \rho^2 \dot{\theta}^2 \\ &- \left(r^2 + a^2 + \frac{2\mu a^2 r \sin^2 \theta}{\rho^2}\right) \sin^2 \theta \dot{\varphi}^2 = \epsilon^2 \end{split}$$

Substituting using (2) gives

$$\frac{\rho^2}{\Delta} = c^2 \left(1 - \frac{2\mu r}{\rho^2} \right) \dot{t}^2 + \frac{2\mu a c r \sin^2 \theta}{\rho^2} \dot{t} \dot{\varphi} - \rho^2 \dot{\theta}^2 - h \dot{\varphi} - \epsilon^2$$

And finally using (1),

$$\dot{r}^2 = \frac{\Delta}{\rho^2} \left[kc^2 \dot{t} - h\dot{\varphi} - \rho^2 \dot{\theta}^2 - \epsilon^2 \right] \tag{8}$$

Which is readily evaluated once $\dot{t}, \dot{\theta}$ and $\dot{\varphi}$ have been found.

Summary of Geodesic Equations

$$\dot{t} = \frac{\left[(r^2 + a^2 \cos^2 \theta)(r^2 + a^2) + 2\mu a^2 r \sin^2 \theta \right] k - \frac{2\mu a r}{c} h}{r^2 \left(1 + \frac{a^2 \cos^2 \theta}{r^2} - \frac{2\mu}{r} \right) (r^2 + a^2) + 2\mu a^2 r \sin^2 \theta}$$

$$\dot{\varphi} = \frac{2\mu a c r k \sin^2 \theta + (r^2 + a^2 \cos^2 \theta - 2\mu r) h}{(r^2 + a^2)(r^2 + a^2 \cos^2 \theta - 2\mu r) \sin^2 \theta + 2\mu a^2 r \sin^4 \theta}$$

$$\dot{\theta}^2 = \frac{Q + (k c a \cos \theta - h \cot \theta)(k c a \cos \theta + h \cot \theta)}{\rho^4}$$

$$\dot{r}^2 = \frac{\Delta}{\rho^2} \left[k c^2 \dot{t} - h \dot{\varphi} - \rho^2 \dot{\theta}^2 - \epsilon^2 \right]$$