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In Boyer-Lindquist co-ordinates, the Kerr metric is written
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where,
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The Lagrangian is given by
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which for the Kerr metric gives:
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The geodesic equations are then given by the Euler-Lagrange equation:
d (0L oc 0
do \ 0%+ oxr
For the t co-ordinate, this gives
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Thus, this is a constant of the motion.
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Likewise, the Euler-Lagrange equation gives for ¢,
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Eliminating between Equations 1 and 2 yields the geodesic equation for ¢.
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Which, after multiplying the fraction through by p?sin®#@ and some further
manipulation, can be re-written
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The geodesic equation for  is given by substituting (3) back into Equation 2:
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After multiplying the fraction through by p2, some further manipulation gives
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It is possible to obtain equivalent second order expressions for 7 and é, however
it is often more convenient to obtain first order expressions using first integrals.

A first integral of the geodesic equations is available from the constant length

of the 4-velocity
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Where €2 = ¢? for massive particles and €2 = 0 for photons (null geodesics).

Furthermore, for the Kerr metric it can be shown that (see, e.g. ‘The Mathe-
matical Theory of Black Holes’, S. Chandrasekhar, 1983)
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is conserved along an affinely-parameterised geodesic.
Using (1) and (2),

asin 0t — (r* 4 a?) sin ¢ = kcasin @ — hcosec 0



Thus, .
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This can be rewritten
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For null geodesics (i.e. photons), e = 0.
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Finally, the geodesic equation in 7 is readily obtained from the length of the

4-velocity.
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Putting in the components of the metric,
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Substituting using (2) gives
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And finally using (1),
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Which is readily evaluated once £, and ¢ have been found.
Summary of Geodesic Equations
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